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Abstract

In underdetermined blind source separation ( BSS), a novel algorithm based on extended support vector machine

(SVM) is proposed to estimate the mixing matrix in this papers including the number of the active sources. Instead of traditional cluster-

ing algorithms it mainly takes the modulus of ohservations and the numberin each direction of arrival. without any prior know ledge about

the sources except for sparsitys and it is not sensitive to the initial values. Simuktions are given to illustrate availbility and robustness of

our algorithm.
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Now adays. blind source separation (BSS) has
attracted more and more attention because of its wide
application in signal processing, including space sig-
nal, electroencephalography (EEG ), electrocardio-
eram (ECG), speech signal, geophysical and chaos
signals and so on. Conventional algorithms separate
the signals under the assumption that the mixing ma-
trix is invertible, such as classical independent com-

ponent analysis (ICA Y, and algorithms based on

2|

signal temporal predictabi]jty[ . However, these al-

gorithms fail when the matrix is ill-conditioned (e.g.
™19 It has been
found that the separation quality seems to improve

the sources are more than sensors

with the higher sparsity of the sources for the under-

determined case R ,

(3479
sparse
many natural signals have sparser representations in

and many source signals are

in the time-domain. Furthermore,
other transform domains, such as the Fourier trans-
form, the wavelet transform and the modified discrete

cosine transform (MDCT)'” . Based on the sparsity
of the sources, several methods are developed for

BSS. For instance, the mixing matrix and sources are
estimated using overcomplete reprasentationm, the
maximum posterior approach, and maximum-likeli-
hood approach[ o However, they are quite compli-
cated and time-consuming. And a two-stage method

(TSM ), . e.

. 1 e
a clustering-then-/ -optimization ap-

proach, was proposed by Bofill, in which six sources

are separated[ ?. The necessary and sufficient condi-
tion of separability using TSM is introduced in Refs.
[4, 6], together with the probability estimation for
recoverability. TSM is an attractive method to recov-
er the sources in the underdetermined case. Howev-
ers the error from the estimation of the basis matrix
will affect precision of separation inevitably. There
exist several problems using the methods mentioned
above to obtain basis matrix (mixing matrix): 1) the
number of the sources is unknown, soitis hard to get
the amount of the clustering centers, while the con-
ventional clustering methods such as k-means cluster-

. 3 . .

ing and K-EV Dt depend on it quite a lot; 2) clus-
tering algorithms are sensitive to the initial value
which is random in reality.

In this study, SVM is used to estimate the mix-
ing matrix and the number of active sources simulta-
neously, under the assumption that columns of mix-
ing matrix are unit length.

The typical model for BSS with m sources and n
Sensors 1s

X(t)=AS(H+ V(D) (D

where X(¢) are observations, 4 €R"""

matrix, §(7) are sources and V() are additive nois-

is a mixing

es. If m>> n, it is the underdetermined model, and

* Supported by National Science Fund for Distinguished Y oung S cholars (Grant No. 60325310), Guangdong Province Science Foundation for Pro-
gram of Research Team (Grant No. 04205783), Specialized Prophasic Basic Research Projects of Ministry of Science and Technology, China (Grant
No. 2005CCA04100), and Key Program of National Natural Science Foundation of China (G rant No. U0635001)

** To whom correspondence should be addressed. E-mail: adshlxie @scut. edu. cn



1364 www. tandf. co. uk/ journals Progress in Natural Science Vol 17 No. 11 2007

Eq. (1) can be rewritten as follow s neglecting noise:
X1 (1) an aiy,
x2(1) _ | an

s () [ P s, (0 )

X, (.t) a,,.l A
1 Learning theory of SVM

In the 1960s, the statistic learning theory was
introduced by Vapnik and Cervonenkis, and as a new
learning machine algorithm, SVM was proposed un-
der the standard of structure risk minimum (SRM).

The process of training the SVM e%‘uals solving a

. . [12 13,15
quadratic programming (QP) problem :
For a group of training samples
{ (xi, y,)|l: L - T;xi eRn, yIE{_l, +1}}
3

the aim is to get the decision-making function below ;

T
f(x) = sign{ Zaiyik (x;p x)— b} @
i=1
where k(x;, x;) is the kernel function, o is the La-
grange multiplier, b is the threshold and { ;) iT:l are
results of the following QP problem[ S
T

T
m ax W(Q)ZZOC,-*%Z O%Q(i’j)oﬁ‘
i=1 i j=1

T
S.T. Doy =0 0< o< Ci=1, T
=1

5
where Q (i, D=y y;k (x;; x;) €ER. and Cis a regular-

1zing parameter.

The classical method sequential minimal opti-
mization (SMO) in Ref. [ 11] will be adopted to
solve the problem above. However, the traditional
SVM can only be used for binary classification and it
will be extended into multi-class classification as fol-
lows, that is K-SVM .

Algorithm 1: Training K-SVM

for i=1: N
for j=i+1: N
selecting the ith class and the jth class of
data set, and training binary SVM using
SMO
end
end
where N is the number of the classes in the training
sets,

There will be N(N—1)/2 SVMs when the al-
and K-SVM is composed of these
SVMs. The corresponding principle of classification is
based on directed acyclic graph (DAG) in Ref. [ 14]
(Fig. 1.

gorithm ends,

Fig. 1. Classification using K-SVM. (a) K-SVM with four class-
es; (b) illustration of the SVM generated for the 1 vs 4 subprob-
lem.

2 Estimation of mixing matrix

Based on the sparsity of the sources, we can con-
clude that observations are distributed mainly in sev-
eral directions with the largest number of the samples
and each principal direction is decided by samples
with larger modulus (Fig. 2). Before introducing the
algorithm, some definitions are given as follows:

Definition 1. For given vectors @, b €R", the
angle of a, b is

a b
@ = arccos BT, 6
And the corresponding normalized angle is
raclo3]
b= TS0 @

T— a else

Definition 2. For given vectors a, bER", bE
O (a, ©) if and only if 0(a, b)<s, i.e.
b€ 0OCa, o)~ 0(a, b)< ¢ ®)

Definition 3. Classify the jth class of data set
containing M; samples into K (0 K<< M;) subclass-
es using K-SVM. If the number of the samples w hich
belong to the ith subclass is Mj;» then the index g;;of
the data set is

M ..

= - 9

9ji — M,

The algorithm to estimate the mixing matrix and
the active source number is given as follows.
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Fig. 2. Mixtures of the sparse sigmals measured by two sensors.

Algorithm 2. Estimate the source number and
the mixing matrix.

1) Initialization

Transform the observations into the correspond-
ing sparse domain, and delete the samples with short
modulus to reduce the effect of overapping sources.
Split the rest samples, which format the testing set,
into N atomic classes G; (i=1, -5 N ) according to
the property of modulus and angle, such that VS €
G=SC€0Zine) Z;F0(Z; €)s i7), where Z;
is the sample with the largest modulus in G;» and €is

a small threshold.
2) Begin

Step 1: Select two classes from the testing set,
w here one class is with the most number of samples,
the other is what makes the normalized angle 0 of the
principal direction of these two classes be the largest,
and push them into the training set.

Step 2: Train K-SVM with the samples in the

training set.

Step 3: Test the rest classes Gy (j=1, v N

0.5000 0.8892
A=
0.5000 0.2177
From the observations (Fig. 4), sources are not

sparse in time domain, and they are transformed into
frequency domain via FFT.

Angle error (AE) and beeline degree (BD) be-

low are performing indices.

Given, vectors a» b ER", the AE of a, b is

0.2382
0.5000 0.2382 —0.8892
0.5000 0.3244 —0.2177
0.3244

— K in the testing set using K-SVM above, and cal-
culate the property index g;;(i=1, --5 k) of the class
Gj; let
Prin = min max gji
o (10)
P i
If pir"";» then push the data in the jth class into
the training set as a new class, where j=arg Pnin
J
and let K=K-+1. If K=N, goto Step 4; else, go-
to Step 2.

If pu "o then push the data in the jth class
into the ith class in the training set, where [ j, i] =

%‘,rng”’ and let N=N—1. If K=N, goto Step 4;
else, goto Step 2.

Step 4: If the sample numbers in the main class-

es (K classes with the most samples) in the training
set are changeless, stop the algorithm; else, push all
of the classes in training set into the testing set, and
adjust M, ", as
=10 an
h="Th— o 1

3) goto Begin
In the algorithm above, the initial values of 7,
Nyare 1,=0.4, 1,=0.9 and o,;, 0, are small posi-

tive parameters.

When the algorithm ends, let K be the total

number of the classes, and the number K of the main
classes be the estimated number of active sources.
Columns of the mixing matrix correspond to the prin-
cipal directions of the main classes.

3 Simulations

In the simulation, six sources (Fig. 3) in Ref.
[9] are used and the mixing matrix is as follows

0.8892 0.4640 0. 2167
—0.2382 —0.4640 0. 8086 a12)
0.2177 —0.5952 — 0. 5462
0.3244 0.4640 0. 030
180 a'b
AE Ca- b) = = Rarceos) g1, T,
(13)

The BD of the direction of arrival of the source signal
. 18]
is

%
BD (s(1) = 1— = (14)
1

X,
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where X; (i=1, -+ m) correspond to the first m
nonzero eigenvalues (ranking from large to small) of

0.5 1 1.5 2 2.5 3

Time instant X 10*
_1 . . . . , ,
0.5 1 1.5 2 25 3

Time instant x 10*

0.5 1 1.5 2 2.5 3

Time instant x 10*

Fig. 3.

0.5 1 1.5 2 2.5 3
Time instant

0.5 1 1.5 2 25 3
Time instant X 10*
Fig. 4.

Two experiments with the same signals will be
shown as follows:

Experiment 1: When the number of the initial
atomic class is 29, the numbers of samples in every
class are 276, 224, 194, 120, 116, 94, 48, 42, 25,
20, 20, 16, 16, 14, 14, 10, 6, 6, 4, 4, 4, 2, 2,
2,2 2 2, 2, 2.

When the algorithm in this paper stops, the re-

0.4989 0.8888  0.2384
~ 10.5009 0.2395 —0.8895
A=10.5013 0.3251 —0.2159
0.4989 0.2168  0.3245

Experiment 2;: When the number of the initial
atomic class is 20, the numbers of samples in every
class are 310, 234, 190, 162, 142, 102, 43, 22,
20, 14, 14, 10, 8, 4, 4, 2,.2, 2, 2. 2.

the covariance matrix of the sources.

1
2
= 0
=
-1
0.5 1 1.5 2 2.5 3
Time instant X 10*

2
§
-1 \ . , , . .
0.5 1 1.5 2 25 3
Time instant x 10*
(5]
=
S

0.5 1.5 2.5 3
Time instant x 10*

Six sources in time domain.

0.5 1 1.5 2 2.5 3
Time instant

0.5 1 1.5 2 25
Time instant

3
X 10*

Four mixing signals of the six sources.

sults are:

The number of total classes: K =9, the num-
bers of samples in every class: 124, 124, 258, 248,
143, 296, 26, 50, 20; the number of main classes:
K=06, the numbers of samples in every main class
124, 124, 258, 248, 143, 296; the corresponding
mixing matrix which is composed of the normalized
principal direction vector is

0.8878 0.4619 0.2174

—0.2426 — 0.4658 0. 8080 15)
0.2192 —0.5962 — 0. 5466
0.3238 0.4628 0. 0317

When the algorithm stops the results are:

The number of total classes; K =11, the num-
bers of samples in every class: 104, 142, 248, 224,
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162, 310, 43, 22, 20, 10, 4; the number of main
classess: K = 6, the numbers of samples in every

class: 104, 142, 248, 224, 162, 310; the corre-
0.4999 0.8878 0.2393

1 — 0.4999 0.2425 —0.88%4

0.5004 0.3265 —0.2152

0.4997 0.2153 0.3247

Comparing experiment 1 and 2, we can see that
the result of the mixing matrix is not sensitive to the
number of the total classes at the beginning and the

0.4437 0.8634 0.2395

B— 0.6077 0.2231 —0.8831
0.5661 0.2841 —0.2614
L0.3368 0. 3523 0.3073
[0.4806 0.9092 0.2399

B— 0.5270 0.2102 —0.8943
0.5590 0.2947 —0.2139

L0. 4228 0. 2352 0.3114

For simplicity, only the results of Experiment 1

are shown in Table 1, including BDs AEs' (columns
of A and B), AEs (columns of A and B), AEs

(folumns of A and /;), and AEs  (columns of A and
A).

Table 1. Values of BDss AEs's AEs: AEs and AEs

S BDS AES' AES AES AES”

si 0.9991 12.2813 5.8880 0.1271  0.1064
s, 0.9994  8.2357 2.6466 0.1017  0.2160
55 0.9992  2.7121 0.8368 0.1053  0.0665
s, 0.9996  3.7213  0.9854  0.2803  0.0549
ss 0.9998  7.1913 1.9881 0.1819  0.1078
Ss  0.9998  1.5522 0.6907 0.0852  0.0356

4 Conclusions

This paper studies a novel algorithm based on
SVM which is extended into multi-class classification
to estimate the mixing matrix for underdetermined
BSS model, including the number of active sources.
The information of observations is full utilized, and
the algorithm is superior to k-means and K-EVD clus-
tering which are sensitive to the initial values. Addi-
tionally, the result is neither sensitive to the number
N of the initial partitioned atomic classes nor to the

number K of the total classes.
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