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　　Abstract　　In underdetermined blind source separation(BSS), a novel algorithm based on extended support vector machine

(SVM)is proposed to est imate the mixing matrix in this paper , including the number of the active sources.Instead of t raditi onal cluster-
ing algorithm s, i t mainly takes the modulus of observations and the number in each direct ion of arrival , w ithout any prior know ledge about

the sou rces except for sparsity , and it is not sensi tive to the initial values.S imulations are given to illust rate avai labi li ty and robustness of

our algorithm.
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　　Now adays , blind source separation (BSS)has

at t racted mo re and more at tention because of i ts w ide

application in signal processing , including space sig-
nal , elect roencephalog raphy (EEG), electrocardio-
g ram (ECG), speech signal , geophysical and chaos

signals and so on.Conventional algorithms separate

the signals under the assumption that the mixing ma-
trix is invertible , such as classical independent com-

ponent analy sis (ICA)
[ 1]
, and algori thms based on

signal temporal predictabili ty
[ 2]
.However , these al-

go rithms fail w hen the matrix is ill-conditioned(e.g.

the sources are more than senso rs)
[ 9 ,16]

.It has been

found that the separation quality seems to improve

w ith the higher sparsi ty of the sources for the under-

determined case
[ 6]
, and many source signals are

sparse
[ 3 , 4 , 7 , 9]

in the time-domain.Furthermore ,
many natural signals have sparser representations in

o ther t ransfo rm domains , such as the Fourier t rans-
form , the w avelet transform and the modified discrete

cosine transform (MDCT)
[ 9]
.Based on the sparsity

of the sources , several methods are developed fo r

BSS.For instance , the mixing matrix and sources are

estimated using overcomplete representation
[ 7]
, the

maximum posterio r approach , and maximum-likeli-

hood approach
[ 10]
.However , they are quite compli-

cated and time-consuming.And a two-stage method

(TSM), i.e.a clustering-then-l
1
-optimization ap-

proach , was proposed by Bof ill , in w hich six sources

are separated
[ 9]
.The necessary and suff icient condi-

tion of separability using TSM is introduced in Refs.
[ 4 , 6] , together w ith the probability estimation for

recoverability.TSM is an at t ractive method to recov-
er the sources in the underdetermined case.Howev-
er , the error f rom the estimation of the basis matrix

w ill affect precision of separation inevitably .There
exist several problems using the methods mentioned

above to obtain basis matrix (mixing matrix):1)the
number of the sources is unknown , so i t is hard to get

the amount of the clustering centers , while the con-
ventional clustering methods such as k-means cluster-

ing and K-EVD
[ 3 , 5]

depend on i t quite a lot;2)clus-
tering algorithms are sensi tive to the initial value

w hich is random in reality.

In this study , SVM is used to estimate the mix-
ing matrix and the number of active sources simulta-
neously , under the assumption that columns of mix-
ing matrix are unit leng th.

The typical model for BSS w ith m sources and n

senso rs is

X(t)=AS(t)+V(t) (1)

where X(t)are observations , A ∈R
n×m

is a mixing

matrix , S(t)are sources and V(t)are addit ive nois-
es.If m >n , it is the underdetermined model , and



Eq.(1)can be rew rit ten as follow s neglecting noise:
x 1(t)

x 2(t)


x n(t)

=

a11

a21


an1

s1(t)+…+

a1m

a2m


anm

sm(t)(2)

1　Learning theory of SVM

In the 1960s , the statistic learning theo ry w as

int roduced by Vapnik and Cervonenkis , and as a new

learning machine algo rithm , SVM was proposed un-
der the standard of structure risk minimum (SRM).

The process of t raining the SVM equals solving a

quadratic programming (QP)problem
[ 12 , 13 ,15]

:

For a group of training samples

{(x i , yi) i=1 , … ,T ;x i ∈R
n
, y i ∈{-1 , +1}}

(3)
the aim is to get the decision-making function below :

f(x)= sign ∑
T

i=1
αiyik(x i , x)-b (4)

where k(x i , x j)is the kernel function , αis the La-

grange mult iplier , b is the threshold and {αi}
T
i=1 are

resul ts of the fol lowing QP problem
[ 13]

max
α
　W(α)=∑

T

i=1
αi -

1
2 ∑

T

i , j=1
αiQ(i , j)αj

S.T.　∑
T

j=1
αiyj =0 , 0 ≤αi ≤C , i =1 , …, T

(5)
where Q(i , j)=y iyjk(x i , x j)∈R , and C is a regular-
izing parameter.

The classical method sequential minimal opti-
mization (SMO)in Ref.[ 11] w ill be adopted to

solve the problem above.However , the traditional

SVM can only be used fo r binary classification and it

w ill be ex tended into multi-class classification as fol-
lows , that is K-SVM :

Algorithm 1:Training K-SVM

for i=1:N
　for j=i+1:N
　　selecting the i th class and the j th class of

data set , and training binary SVM using

SMO

　end
end

where N is the number of the classes in the t raining

sets.

There will be N(N -1)/2 SVMs when the al-
gori thm ends , and K-SVM is composed of these

SVM s.The co rresponding principle of classification is

based on directed acyclic graph(DAG)in Ref.[ 14]
(Fig .1).

Fig.1.　Classifi cat ion using K-SVM.(a)K-SVM w ith four class-
es;(b)illust ration of the SVM generated for the 1 vs 4 subprob-
lem.

2　Estimation of mixing matrix

Based on the sparsity of the sources , we can con-
clude that observations are distributed mainly in sev-
eral directions w ith the largest number of the samples

and each principal direction is decided by samples

w ith larger modulus(Fig.2).Befo re int roducing the

algorithm , some defini tions are given as follows:

Definition 1.Fo r given vectors a , b ∈R
n
, the

angle of a , b is

α=arccos
a
T
·b

‖a ‖2 · ‖b ‖2
(6)

　　And the corresponding normalized angle is

θ(a , b)=
α if α∈ 0 , π

2

π-α else
(7)

　　Definition 2.For given vectors a , b ∈R
n
, b ∈

O(a , ε)if and only if θ(a , b)≤ε, i.e.
b ∈ O(a , ε) θ(a , b)≤ε (8)

　　Definition 3.Classify the j th class of data set

containing Mj samples into K(0<K ≤Mj)subclass-
es using K-SVM.If the number of the samples w hich

belong to the i th subclass is Mji , then the index qj iof

the data set is

q ji =
M ji

M j
(9)

　　The algorithm to estimate the mixing matrix and

the active source number is given as follow s.
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Fig.2.　Mixtures of the sparse signals measured by tw o sensors.

Algorithm 2:Estimate the source number and

the mixing matrix.

1)Initialization

Transform the observ ations into the co rrespond-
ing sparse domain , and delete the samples w ith short

modulus to reduce the ef fect of overlapping sources.
Split the rest samples , which fo rmat the testing set ,
into N atomic classes Gi(i =1 , …, N)acco rding to

the property of modulus and angle , such that  S ∈
Gi S ∈O(Z i , ε), Z i  O(Z j , ε), i≠j , where Z i

is the sample wi th the largest modulus in Gi , and εis
a small threshold.

2)Begin

Step 1:Select two classes f rom the testing set ,
where one class is with the most number of samples ,
the o ther is what makes the no rmalized angle θof the
principal direct ion of these tw o classes be the largest ,
and push them into the t raining set.

Step 2:Train K-SVM with the samples in the

training set.

Step 3:Test the rest classes Gj(j=1 , …, N

-K)in the test ing set using K-SVM above , and cal-
culate the property index qj i(i=1 , …, k)of the class
Gj;let

Pmin =min
j

max
i
qji

Pmax =max
j

max
i
q ji

(10)

If pmin<η1 , then push the data in the j th class into

the t raining set as a new class , where j =arg
j
Pmin ,

and let K =K +1.If K ≥N , goto Step 4;else , go-
to Step 2.

If pmax>η2 , then push the data in the j th class

into the i th class in the training set , where [ j , i] =
arg
j , i
P max , and let N=N -1.If K ≥N , goto Step 4;

else , goto Step 2.

Step 4:If the sample numbers in the main class-

es(K
⌒

classes with the most samples)in the training

set are changeless , stop the algorithm;else , push all

of the classes in training set into the testing set , and
adjust η1 , η2 as

η1 =η1 +σ1
η2 =η2 -σ2

(11)

　　3)goto Begin

In the algorithm above , the ini tial values of η1 ,
η2 are η1=0.4 , η2 =0.9 and σ1 , σ2 are small posi-

tive parameters.

When the algorithm ends , let K be the total

number of the classes , and the number K
⌒

of the main

classes be the estimated number of active sources.
Columns of the mixing matrix co rrespond to the prin-
cipal direct ions of the main classes.

3　Simulations

In the simulation , six sources(Fig.3)in Ref.
[ 9] are used and the mixing matrix is as follow s

A =

0.5000 0.8892 0.2382 0.8892 0.4640 0.2167
0.5000 0.2382 -0.8892 -0.2382 -0.4640 0.8086
0.5000 0.3244 -0.2177 0.2177 -0.5952 -0.5462
0.5000 0.2177 0.3244 0.3244 0.4640 0.0306

(12)

From the observat ions (Fig.4), sources are not

sparse in time domain , and they are transformed into

frequency domain via FFT .

Angle error (AE)and beeline deg ree (BD)be-
low are performing indices.

Given vectors a , b ∈R
n
, the AE of a , b is

AE(a , b)=
180
π

arccos
a
T
b

‖a ‖2 · ‖ b‖2

(13)
The BD of the direction of arrival of the source signal

is
[ 8]

BD(s(t))=1 -
 λ2

 λ1
(14)
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where  λi(i =1 , … , m)correspond to the fi rst m

nonzero eigenvalues(ranking from large to small)of

the covariance matrix of the sources.

Fig.3.　Six sources in time domain.

Fig.4.　Four mixing signals of the six sources.

　　Tw o experiments with the same signals w ill be

show n as follow s:

Experiment 1:When the number of the initial

atomic class is 29 , the numbers of samples in every

class are 276 , 224 , 194 , 120 , 116 , 94 , 48 , 42 , 25 ,
20 , 20 , 16 , 16 , 14 , 14 , 10 , 6 , 6 , 4 , 4 , 4 , 2 , 2 ,
2 , 2 , 2 , 2 , 2 , 2.

When the algo rithm in this paper stops , the re-

sults are:

The number of to tal classes:K =9 , the num-
bers of samples in every class:124 , 124 , 258 , 248 ,
143 , 296 , 26 , 50 , 20;the number of main classes:
 K =6 , the numbers of samples in every main class:
124 , 124 , 258 , 248 , 143 , 296;the corresponding

mixing matrix w hich is composed of the normalized

principal di rection vector is

A
⌒
=

0.4989 0.8888 0.2384 0.8878 0.4619 0.2174
0.5009 0.2395 -0.8895 -0.2426 -0.4658 0.8080
0.5013 0.3251 -0.2159 0.2192 -0.5962 -0.5466
0.4989 0.2168 0.3245 0.3238 0.4628 0.0317

(15)

　　Experiment 2:When the number of the initial

atomic class is 20 , the numbers of samples in every

class are 310 , 234 , 190 , 162 , 142 , 102 , 43 , 22 ,
20 , 14 , 14 , 10 , 8 , 4 , 4 , 2 , 2 , 2 , 2 , 2.

When the algori thm stops , the results are:

The number of total classes:K =11 , the num-
bers of samples in every class:104 , 142 , 248 , 224 ,
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162 , 310 , 43 , 22 , 20 , 10 , 4;the number of main

classes: K =6 , the numbers of samples in every

class:104 , 142 , 248 , 224 , 162 , 310;the corre-

sponding mixing matrix w hich is composed of the

no rmalized principal direction vector is

 A =

0.4999 0.8878 0.2393 0.8881 0.4606 0.2175
0.4999 0.2425 -0.8894 -0.2417 -0.4668 0.8077
0.5004 0.3265 -0.2152 0.2193 -0.5969 -0.5471
0.4997 0.2153 0.3247 0.3237 0.4622 0.0319

(16)

　　Comparing experiment 1 and 2 , we can see that

the result of the mixing matrix is not sensi tive to the

number of the total classes at the beginning and the

end.

The estimated mixing matrices  B , B via k-means

and K-EVD respect ively are

 B =

0.4437 0.8634 0.2395 0.8865 0.5556 0.2224
0.6077 0.2231 -0.8831 -0.2657 -0.4219 0.8220
0.5661 0.2841 -0.2614 0.1618 -0.5246 -0.5235
0.3368 0.3523 0.3073 0.3425 0.4880 0.0278

(17)

 B =

0.4806 0.9092 0.2399 0.8883 0.4930 0.2129
0.5270 0.2102 -0.8943 -0.2535 -0.4644 0.8153
0.5590 0.2947 -0.2139 0.2120 -0.5789 -0.5374
0.4228 0.2352 0.3114 0.3189 0.4540 0.0334

(18)

　　For simplici ty , only the results of Experiment 1

are show n in Table 1 , including BDs , AEs
1
(columns

of A and  B), AEs
2
(columns of A and  B), AEs

(columns of A and A
⌒
), and AEs

＊
(columns of  A and

A
⌒
).

Table 1.　Values of BDs , AEs
1
, AEs

2
, AEs , and AEs

＊

S BDS AES
1

AES
2 AES AES

＊

s1 0.9991 12.2813 5.8880 0.1271 0.1064
s2 0.9994 8.2357 2.6466 0.1017 0.2160
s3 0.9992 2.7121 0.8368 0.1053 0.0665
s4 0.9996 3.7213 0.9854 0.2803 0.0549
s5 0.9998 7.1913 1.9881 0.1819 0.1078
s6 0.9998 1.5522 0.6907 0.0852 0.0356

4　Conclusions

This paper studies a novel algorithm based on

SVM which is ex tended into multi-class classification

to estimate the mixing matrix fo r underdetermined

BSS model , including the number of active sources.
The information of observations is full utilized , and
the alg orithm is superior to k-means and K-EVD clus-
tering which are sensitive to the initial values.Addi-
tionally , the result is neither sensitive to the number

N of the ini tial partitioned atomic classes nor to the

number K of the total classes.
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